一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题: (1)甲乙两地之间的距离为 千米; (2)求快车和慢车的速度; (3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.
如图,在Rt△ABC中,∠C=90°,AC=4,BC=3. (1)该三角形的外接圆的半径长等于; (2)用直尺和圆规作出该三角形的内切圆(不写作法,保留作图痕迹),并求出该三角形内切圆的半径长.
已知二次函数的图象经过点(4,3),(3,0). (1)求b、c的值; (2)求出该二次函数图象的顶点坐标和对称轴,并在所给坐标系中画出该函数的图象; (3)该函数的图像经过怎样的平移得到的图像?
解方程:.
如图,利用一面长度为7米的墙,用20米长的篱笆能否围出一个面积为48平方米的矩形菜园?若能,求出该菜园与墙平行一边的长度;若不能,说明理由.
已知O是平面直角坐标系的原点,点A(1,n),B(-1,-n)(n>0),AB的长是,若点C在轴上,且OC=AC,求点C的坐标.