下表给出了某班6名同学身高情况(单位:cm)(1)完成表中空的部分;(2)他们6人中最高身高比最矮身高高多少?(3)如果身高达到或超过平均身高时叫达标身高,那么这6个同学身高的达标率是多少?(精确到小数点后两位)
(本题10分) 如图,直线与反比例函数的图象交于A,B两点. (1)求、的值? (2)直接写出时x的取值范围? (3)如图,等腰梯形OBCD中,BC//OD,OB=CD,OD边在x轴上,过点C作CE ⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时, 请判断PC和PE的大小关系,并说明理由.
(本题8分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字,和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y). (1)用列表或画树状图的方法写出点Q的所有可能坐标; (2)求点Q落在直线y=-X-2上的概率.
(本题8分) 如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中(m)是球的飞行高度,(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m. (1)请写出抛物线的开口方向、顶点坐标、对称轴. (2)请求出球飞行的最大水平距离. (3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.
(本题6分)如图,已知直线经过点P(,),点P关于轴的对称点P′在反比例函数()的图象上. (1)求的值; (2)直接写出点P′的坐标; (3)求反比例函数的解析式.
(本题6分)如图,已知E、F是□ABCD对角线AC上的两点,且BE⊥AC,DF⊥AC. (1)求证:△ABE≌△CDF; (2)请写出图中除△ABE≌△CDF外其余两对全等三角形(不再添加辅助线).