如图,抛物线与轴交于两点,与轴交于点.(1)请求出抛物线顶点的坐标(用含的代数式表示),两点的坐标;(2)经探究可知,与的面积比不变,试求出这个比值;(3)是否存在使为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.
如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点均在格点上,在建立平面直角坐标系后,点A的坐标为(-5,1),点B的坐标为(-3,3),点C的坐标为(-3,1)。 (1)将Rt△ABC沿x轴正方向平移7个单位得到Rt△A1B1C1,试在图上画出的图形Rt△A1B1C1的图形; (2)Rt△ABC关于点D(-1,0)对称的图形是Rt△A2B2C2,试在图上画出Rt△A2B2C2的图形,并写出A2、B2、C2点的坐标。
先化简,再求值(﹣1)÷,其中x=2sin60°+1.
已知:如图,正比例函数的图象与反比例函数的图象交于点 (1)试确定上述正比例函数和反比例函数的表达式; (2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值? (3)M(m,n)是反比例函数图像上的一动点,其中0<m<3,过M作直线MB‖x轴交y轴于点B。过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由; (4)探索:x轴上是否存在点P,使ΔOAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由。
在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案: 方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元; (总费用=广告赞助费+门票费) 方案二:购买门票方式如图所示. 解答下列问题: (1)方案一中,y与x的函数关系式为; 方案二中,当0≤x≤100时,y与x的函数关系式为, 当x>100时,y与x的函数关系式为; (2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由; (3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.
如图,已知A(-4,)、B(2,-4)是一次函数的图象和反比例函数的图象的两个交点。 (1)求反比例函数和一次函数的解析式; (2)求直线AB和轴的交点C的坐标及△AOB的面积; (3)求方程的解(请直接写出答案); (4)求不等式的解集(请直接写出答案)。