如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从点A出发,沿AB以4cm/s的速度向点B运动,同时点Q从C点出发,沿CA以3cm/s的速度向点A运动,设运动时间为x秒.(1)当x为何值时,BP=CQ;(2)以A、P、Q为顶点的三角形能否与以C、Q、B为顶点的三角形相似?若能,求出x的值;若不能,请说明理由.
请用直尺和圆规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上,面积相同的图形视为同一种.(保留作图痕迹).
如图,已知直线过点和,是轴正半轴上的动点,的垂直平分线交于点,交轴于点.(1)直接写出直线的解析式;(2)当时,设,的面积为,求S关于t的函数关系式;并求出S的最大值;(3)当点Q在线段AB上(Q与A、B不重合)时,直线过点A且与x轴平行,问在上是否存在点C,使得是以为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.
北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销.商场又用68000元购进第二批这种运动服,所够数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种牌运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?()
已知:如图,⊙O是△ABC的外接圆,AB为⊙O直径,且PA⊥AB于点A,PO⊥AC于点M.(1)求证:是⊙的切线;(2)当,时,求PC的长.
如图,在□ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.