如图在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于第二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n).线段OA=5,E为x轴上一点,且sin ∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)直接写出不等式﹤kx+b的x的取值范围.
有一批圆心角为90°,半径为1的扇形状下脚料,现利用这批材料截取尽可能大的正方形材料,如图有两种截取方法:方法1,如图(1)所示,正方形OPQR的顶点P、Q、R均在扇形边界上;方法2,如图(2)所示,正方形顶点C、D、E、F均在扇形边界上.图(1)、图(2)均为轴对称图形.试分别求这两种截取方法得到的正方形面积.并说明哪种截取方法得到的正方形面积更大?
如图,A为圆O上半圆上的一个三等分点,B是AM的中点,P为直径MN上的一动点,圆O的半径为1,求AP+BP的最小值.
如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD、BC,AB=5,AC=4,求:BD的长.
如图,AB交⊙O于M,N,且AM=BN,那么OA=OB吗?为什么?
如图所示,在△ABC中,AB=AC,任意延长CA到P,再延长AB到Q,使AP=BQ,求证:△ABC的外心O与点A、P、Q四点共圆.