已知抛物线的顶点坐标为(-2,-3),且经过点(-3,-2),求这个抛物线的解析式。
在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.
用适当的方法解下列方程(1)(2)
已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A, B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大.(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一 边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140 km/h),对这种汽车进行测试,测得数据如下表:(1)以车速为x轴,以刹车距离为y轴,建立平面直角坐标系,根据上表对应值作出函数的大致图象; (2)观察图象估计函数的类型,并确定一个满足这些数据的函数解析式;(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5 m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶还是正常行驶?
如图,在菱形中,对角线与相交于点,,在菱形的外部以为边作等边三角形。点是对角线上一动点(点不与点、D重合),将线段绕点顺时针方向旋转得到线段,连接。(1)求的长;(2)如图2,当点在线段上,且点三点在同一条直线上时,求证:(3)连接,若的面积为40,请画出图形,并直接写出的周长。