如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D。AF平分∠CAB,交CD于点E,交CB于点F。(1)求证:CE=CF。(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示。试猜想:BE′与CF有怎样的数量关系?请证明你的结论。
如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由.
在国家政策的宏观调控下,某市的商品房成交均价由2012年10月底的20000元/m2下降到2012年12月底的16200元/m2.(1)求2012年11、12两月平均每月降价的百分率是多少?(2)如果房价继续按此降价的百分率回落,请你预测到2013年2月底该市的商品房成交均价是否会跌破13000元/m2?并说明理由.
已知关于x的一元二次方程.(1)若此方程有两个实数根,求实数k的取值范围;(2)如果此方程的两个实数根为,,且满足,求实数k的值.
如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)在图中画出△A1OB1;(2)点B关于点O中心对称的点的坐标为_________ ;(3)求△AOA1的面积.
(每小题4分,本题满分8分)(1)计算: (2)解方程:.