如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.
某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点):求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围.(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?
已知:如图9,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E。(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明。
解方程:
计算:
A、B两地果园分别有苹果10吨和40吨,全部运送到C、D两地,而C、D两地分别需要苹果15吨和35吨;已知从A、B地到C、D地的运价如下表:(1)若从B果园运到C地的苹果为x吨,则从B果园运到D地的苹果为________吨;从A果园将苹果运往D地的运输费用为__________________________元.(2)用含x的式子来表示出总运输费(要求:列出算式,并化简)