已知函数,(1)若的一个极值点为1,求a的值; (2)设在上的最大值为,当时,恒成立,求a的取值范围.
解不等式(1)(2)
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分别是A1B、B1C1的中点.(Ⅰ)求证:MN⊥平面A1BC;(Ⅱ)求直线BC1和平面A1BC所成角的大小.
如图⑴在直角梯形PDCB中,PD∥CB,CD⊥PD,PD=6,BC=3,DC=,A是线段PD的中点,E是线段AB的中点;如图⑵,沿AB把平面PAB折起,使二面角P-CD-B成45角. ⑴求证PA⊥平面ABCD; ⑵求平面PEC和平面PAD所成的锐二面角的大小.
已知向量且,函数 (1)求函数的最小正周期及单调递增区间;(2)若,分别求及的值
已知函数。 (1)是否存在实数,使得处取极值?试证明你的结论; (2)若上是减函数,求实数的取值范围。