在平面直角坐标系中,圆交轴于点(点在轴的负半轴上),点为圆上一动点,分别交直线于两点.(1)求两点纵坐标的乘积; (2)若点的坐标为,连接交圆于另一点,①试判断点与以为直径的圆的位置关系,并说明理由; ②记的斜率分别为,试探究是否为定值?若是,请求出该定值;若不是,请说明理由.
(本小题满分13分) 如图,在三棱柱中,每个侧面均为正方形,为底边的中点,为侧棱的中点,与的交点为. (Ⅰ)求证:∥平面; (Ⅱ)求证:平面.
(本小题满分13分) 袋子中装有编号为a,b的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个球. (Ⅰ)写出所有不同的结果; (Ⅱ)求恰好摸出1个黑球和1个红球的概率; (Ⅲ) 求至少摸出1个黑球的概率.
(本小题满分13分) 在中,角,,所对的边分别为,,,且,. (Ⅰ)求,的值; (Ⅱ)若,求,的值.
(本小题共13分) 已知数列的前项和为,且满足,. (Ⅰ)求证:{}是等差数列; (Ⅱ)求数列的通项公式; (Ⅲ)若,求证: .
(本小题共14分) 已知椭圆的中心在原点,焦点在轴上,经过点且离心率.过定点的直线与椭圆相交于,两点. (Ⅰ)求椭圆的方程; (Ⅱ)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存 在,请说明理由.