如图,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断裂,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前有多高?(旗杆粗细、断裂磨损忽略不计)
随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项: A .和同学亲友聊天; B .学习; C .购物; D .游戏; E .其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到图表(部分信息未给出) :
选项
频数
频率
A
10
m
B
n
0.2
C
5
0.1
D
p
0.4
E
根据以上信息解答下列问题:
(1)这次被调查的学生有多少人?
(2)求表中 m , n , p 的值,并补全条形统计图.
(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.
如图,直线 y = kx + b ( k 、 b 为常数)分别与 x 轴、 y 轴交于点 A ( − 4 , 0 ) 、 B ( 0 , 3 ) ,抛物线 y = − x 2 + 2 x + 1 与 y 轴交于点 C .
(1)求直线 y = kx + b 的函数解析式;
(2)若点 P ( x , y ) 是抛物线 y = − x 2 + 2 x + 1 上的任意一点,设点 P 到直线 AB 的距离为 d ,求 d 关于 x 的函数解析式,并求 d 取最小值时点 P 的坐标;
(3)若点 E 在抛物线 y = − x 2 + 2 x + 1 的对称轴上移动,点 F 在直线 AB 上移动,求 CE + EF 的最小值.
如图,点 E 是 ΔABC 的内心, AE 的延长线交 BC 于点 F ,交 ΔABC 的外接圆 ⊙ O 于点 D ,连接 BD ,过点 D 作直线 DM ,使 ∠ BDM = ∠ DAC .
(1)求证:直线 DM 是 ⊙ O 的切线;
(2)求证: D E 2 = DF · DA .
如图,在 ▱ ABCD 中,以点 A 为圆心, AB 长为半径画弧交 AD 于点 F ,再分别以点 B 、 F 为圆心,大于 1 2 BF 的相同长为半径画弧,两弧交于点 P ;连接 AP 并延长交 BC 于点 E ,连接 EF ,则所得四边形 ABEF 是菱形.
(1)根据以上尺规作图的过程,求证:四边形 ABEF 是菱形;
(2)若菱形 ABEF 的周长为16, AE = 4 3 ,求 ∠ C 的大小.
为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位: cm ) 如表所示:
甲
63
66
61
64
乙
65
60
(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?
(2)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对状况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.