如图所示,四边形ABCD为直角梯形,,,为等边三角形,且平面平面ABE,,P为CE中点.(1)求证:;(2)求三棱锥D-ABP的体积.
如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山路AC长为1 260 m,经测量cos A=,cos C=. (1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?
在△ABC中,角A,B,C所对的边分别为a,b,c,已知cos C+(cos A-sin A)cos B=0.(1)求角B的大小;(2)若a+c=1,求b的取值范围.
在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos 2A-3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=5,b=5,求sin Bsin C的值.
已知函数f(x)=Msin(ωx+φ)(M>0,ω>0,|φ|<)的部分图象如图所示. (1)求函数f(x)的解析式;(2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a-c)cos B=bcos C,求f的取值范围.
已知函数f(x)=sin2x+sin xcos x,x∈.(1)求f(x) 的零点;(2)求f(x)的最大值和最小值.