已知抛物线:,过点的直线交抛物线于,两点.(1)若抛物线的焦点为,求该抛物线的方程;(2)已知过点,分别作抛物线的切线,,交于点,以线段为直径的圆经过点,求实数的值.
(本小题满分12分) 已知直线过椭圆的右焦点,抛物线:的焦点为椭圆的上顶点,且直线交椭圆于、两点,点、、在直线上的射影依次为点、、. (1)求椭圆的方程; (2)若直线l交y轴于点,且,当变化时,探求的值是否为定值?若是,求出的值,否则,说明理由; (3)连接、,试探索当变化时,直线与是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
(本小题满分12分)已知函数 (1)当时,求函数的单调增区间,求函数区间上的最小值; (2)设,若存在,使得成立,求实数的取值范围。
(本小题满分12分) 如图,在三棱锥中,,为的中点. (1)求证:面; (2)求异面直线与所成角的余弦值.
(本小题满分12分)已知圆,直线 ,与圆交与两点,点. (1)当时,求的值; (2)当时,求的取值范围.
(本小题满分10分) 已知函数(其中,)的最小正周期为. (1)求的值; (2)在△中,若,且,求.