在四棱锥中,平面,底面为直角梯形,,,且,分别为,的中点.(1)求证:平面;(2)若直线与平面的交点为,且,求截面与底面所成锐二面角的大小.
已知动点M到点A(2,0)的距离是它到点B(8,0)的距离的一半, 求:(Ⅰ)动点M的轨迹方程; (Ⅱ)若N为线段AM的中点,试求点N的轨迹.
设集合A=,关于x的不等式的解集为B(其中a<0),设, ,且是的必要不充分条件,求实数a的取值范围.
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)若函数的图像在点处的切线的斜率为,问: 在什么范围取值时,对于任意的,函数在区间上总存在极值? (Ⅲ)当时,设函数,若在区间上至少存在一个,使得成立,试求实数的取值范围.
已知函数, (Ⅰ)当时,求该函数的定义域和值域; (Ⅱ)如果在区间上恒成立,求实数的取值范围.
如图,四棱锥中,⊥底面,底面为梯形,,,且,点是棱上的动点. (Ⅰ)当∥平面时,确定点在棱上的位置; (Ⅱ)在(Ⅰ)的条件下,求二面角的余弦值.