设命题;命题:不等式对任意恒成立.若为真,且或为真,求的取值范围.
已知矩阵M=, (1)求矩阵M的逆矩阵; (2)求矩阵M的特征值和特征向量; (3)试计算.
已知(-)n展开式中第三项的系数比第二项的系数大162,求: (1) n的值;(2)展开式中含x3的项.
已知函数(其中常数),( 是圆周率). (1)当时,若函数是奇函数,求的极值点; (2)当时,求函数的单调递增区间; (3)当时,求函数在上的最小值,并探索:是否存在满足条件的实数,使得对任意的,恒成立.
,是方程的两根, 数列是公差为正的等差数列,数列的前项和为,且. (1)求数列,的通项公式; (2)记=,求数列的前项和.
已知函数,直线与的图象交点之间的最短距离为. (1)求的解析式及其图象的对称中心; (2)设的内角的对边分别为,若, 且,,求的面积.