如图,利用热气球探测器测量大楼AB的高度.从热气球P处测得大楼顶部B的俯角为37°,大楼底部A的俯角为60°,此时热气球P离地面的高度为120m.试求大楼AB的高度(精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)
某厂要制造能装250mL(1mL=1cm3)饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部厚度都是0.02cm,顶部厚度是底部厚度的3倍,这是为了防止“砰”的一声打开易拉罐时把整个顶盖撕下来,设一个底面半径是x cm的易拉罐用铝量是y cm3.用铝量=底面积×底部厚度+顶部面积×顶部厚度+侧面积×侧壁厚度,求y与x间的函数关系式.
已知一个三角形的面积是12cm2(1)写出一边y(cm)与该边上的高x(cm)间的函数关系式;(2)画出函数图象.
若反比例函数y=与一次函数y=kx+b的图象都经过点(-2,-1),且当x=3时,这两个函数值相等,求反比例函数解析式.
如图,Rt△AOB的顶点A是一次函数y=-x+m+3的图象与反比例函数y=的图象在第二象限的交点,且S△AOB=1,求点A的坐标.
已知函数y=-4x2-2mx+m2与反比例函数y=的图象在第二象限内的一个交点的横坐标是-2,求此两个函数的解析式.