如图,△ABC是等边三角形, AE=CD,AD、BE相交于点P,BQ⊥AD于点Q. (1)试说明△ABE≌△CAD. (2)求∠BPQ的度数. (3)若PQ=3,PE=1, 则AD的长为 .
已知某个一次函数图象经过点A(0,2)、B(2,0)是这个函数图象上的两点. (1)求一次函数的解析式。 (2)点C(x1,y1)、D(x2,y2)是这个函数图象上的两点.若x1<x2,比较y1,y2的大少。
如图,、是等腰梯形的两条对角线.证明:=
已知二次函数.当时,函数值随的增大而减小,求的取值范围;以抛物线的顶点为一个顶点作该抛物线的内接正(,两点在抛物线上),请问:△的面积是与无关的定值吗?若是,请求出这个定值;若不是,请说明理由;若抛物线与轴交点的横坐标均为整数,求整数的值.
如图,在中,,以为直径的⊙分别交、于点、,点在的延长线上,且.求证:直线是⊙的切线;若,,求的长.
我省某工艺厂为全运会设计了一款工艺品的成本是20元∕件.投放市场进行试销后发现每天的销售量(件)是售价(元∕件)的一次函数,当售价为22元∕件时,每天销售量为380件;当售价为25元∕件时,每天的销售量为350件.求与的函数关系式该工艺品售价定为每件多少元时,每天获得的利润最大?最大利润是多少元?(利润=销售收入-成本)