在平面直角坐标系中,已知直线与椭圆的一条准线的交点位于轴上,求实数的值.
设函数f(x)=lnx-px+1(1)当P>0时,若对任意x>0,恒有f(x)≤0,求P的取值范围(2)证明: (n∈N,n≥2)
设函数f(x)=sin(x-)-2cos2x+1(1)求f(x)的最小正周期(2)若函数y=g(x)与f(x)的图象关于直线x=1对称,求当x∈[0,]时,y=g(x)的最大值
已知函数,(1)求在x=1处的切线斜率的取值范围;(2)求当在x=1处的切线的斜率最小时,的解析式;(3)在(Ⅱ)的条件下,是否总存在实数m,使得对任意的,总存在,使得成立?若存在,求出实数m的取值范围;若不存在,说明理由.
数列 的前项和为,数列的前项的和为,为等差数列且各项均为正数,,,(Ⅰ)求证:数列是等比数列;(Ⅱ)若,,成等比数列,求.
如图,正方形和的边长均为1,且它们所在平面互相垂直,为线段的中点,为线段的中点。(1)求证:∥面;(2)求证:平面⊥平面;(3)求直线与平面所成角的正切值.