已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度). (1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ; (2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ; (3)△A2B2C2的面积是 平方单位.
如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P、Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连接PQ,设运动时间为t(t >0)秒. (1)求线段AC的长度; (2)当点Q从点B向点A运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围; (3)伴随着P、Q两点的运动,线段PQ的垂直平分线为l: ①当l经过点A时,射线QP交AD于点E,求AE的长; ②当l经过点B时,求t的值.
如图,抛物线经过点A(-1,0)、B(3,0)、C(0,),连接AC、BC,将△ABC绕点C逆时针旋转,使点A落在x轴上,得到△DCE,此时,DE所在直线与抛物线交于第一象限的点F. (1)求抛物线对应的函数关系式. (2)求点A所经过的路线长. (3)抛物线的对称轴上是否存在点P使△PDF是等腰三角形. 若存在,求点P的坐标;若不存在,说明理由.
(1)操作发现 如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE.且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?请说明理由. (2)问题解决保持(1)中的条件不变,若DF="4" , CD="9" ,求的值. (3)类比探究保持(1)中的条件不变,若DC=2DF,求的值.
某商厦将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台. (1)假设每台冰箱降价50x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
某校为了解九年级男生1000米长跑的成绩,从中随机抽取了50名男生进行测试,根据测试评分标准,将他们的得分进行统计后分为A、B、C、D四等,并绘制成下面的频数分布表和扇形统计图.
(1)试直接写出x、y、m、n的值; (2)求表示得分为C等的扇形的圆心角的度数; (3)如果该校九年级共有男生200名,试估计这200名男生中成绩达到A等和B等的人数共有多少人?