如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)B(-1,-2)两点,与轴相交于点C.(1)分别求反比例函数和一次函数的解析式(关系式);(2)连接OA,求△AOC的面积.
如图,直线EF交直线AB、CD于点M、N,∠EMB=∠END,MG平分∠EMB,NH平分∠END。试问:图中哪两条直线互相平行?为什么?
如图,已知,∥,∠1+∠3=180º,请说明∥。
如图,已知AB∥CD∥EF,GC⊥CF,∠ABC=65º,∠EFC=40º,求∠BCG的度数。
平面内的两条直线有相交和平行两种位置关系。(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD +∠D,得∠BPD=∠B-∠D。将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系? (不需证明);(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数。
如图,已知AD⊥BC于D,EG⊥BC于G,∠E=∠3,AD平分∠BAC吗?若平分,请写出推理过程;若不平分,试说明理由.