如图,在四棱柱中,侧棱底面,(Ⅰ)求证:平面;(Ⅱ)若直线与平面所成角的正弦值为,求的值.(Ⅲ)现将与四棱柱形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的解析式.(直接写出答案,不必说明理由)
.(本小题满分12分) 一个盒子里装有4张卡片,分别标有数2,3,4,5;另一个盒子里则装有分别标有3,4,5,6四个数的4张卡片.从两个盒子里各任取一张卡片. (1)求取出的两张卡片上的数不同的概率; (2)求取出的两张卡片上的数之和ξ的期望.
(本小题满分12分)已知△ABC中,a,b,c分别是角A,B,C的对边,A是锐角,且,·=8.(1)求bc的值;(2)求a的最小值.
(本小题满分14分)已知函数,.(1)若函数在时取得极值,求的单调递减区间;(2)证明:对任意的x∈R,都有||≤| x |;(3)若a=2,∈[,]),,求证:…+<(n∈N*).
(本小题满分13分)已知过椭圆C:+=1(a>b>0)右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点;又函数图象的一条对称轴的方程是.(1)求椭圆C的离心率e与直线AB的方程;(2)对于任意一点M∈C,试证:总存在角θ(θ∈R)使等式+成立.
(本小题满分12分)已知函数,在[-1,1]上是减函数.(1)求曲线在点(1,)处的切线方程;(2)若≤在x∈[-1,1]上恒成立,求的取值范围;