在平面直角坐标系中,已知点,动点在轴上的正射影为点,且满足直线.(Ⅰ)求动点M的轨迹C的方程;(Ⅱ)当时,求直线的方程.
若平面内给定三个向量,(1)求。(2)求满足的实数m,n的值。
椭圆G:的两个焦点为是椭圆上一点,且满.(1)求离心率的取值范围;(2)当离心率取得最小值时,点到椭圆上点的最远距离为.①求此时椭圆G的方程;②设斜率为的直线与椭圆G相交于不同两点,为的中点,问:
已知圆C:,直线:.(1)当为何值时,直线与圆C相切;(2)当直线与圆C相交于A、B两点,且时,求直线的方程.
已知椭圆(a>b>0)的离心率, 直线与椭圆交于P,Q两点, 且OP⊥OQ(如图) .(1)求证:;(2)求这个椭圆方程.
已知定点,动点在直线上运动,当线段最短时,求的坐标.