化简 (1)3x2+2x-5x2+3x (2)4(m2+n)+2(n-2m2) (3)-3(2x2-xy)-(x2+xy-6) (4)-(6a3b+2b2)+(4a3b-8b2) (5)先化简,再求值:3x2y-[2x2y-(2xy-3x2y)]+3xy2,其中x=3,y=-
初中生对待学习的态度一直是教育工作者关注的问题之一.为此菏泽市教育局对我市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了 名学生; (2)将图①补充完整; (3)求出图②中C级所占的圆心角的度; (4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?
如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4, (1)求证:△ABE∽△ADB; (2)求AB的长; (3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.
(1)已知一次函数y=x+2与反比例函数,其中一次函数y=x+2的图象经过点P(k,5). ①试确定反比例函数的表达式; ②若点Q是上述一次函数与反比例函数图象在第三象限的交点,求点Q的坐标. (2)如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,E为AB中点,EF∥DC交BC于点F,求EF的长.
(1)解方程: (2)解不等式组
(1)计算:﹣(4﹣π)0﹣6cos30°+|﹣2|; (2)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.