选修4-4参数方程与极坐标在平面直角坐标系中,直线的参数方程为,以为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标,曲线C的极坐标方程为.(1)求曲线C的直角坐标方程及直线的普通方程;(2)将曲线C上的所有点的横坐标缩短为原来的,再将所得曲线向左平移1个单位,得到曲线C,求曲线C上的点到直线的距离的最小值.
(本小题满分12分) 如图,平面⊥平面,是直角三角形,,四边形是直角梯形,其中,,,且,是的中点,分别是的中点. (Ⅰ)求证:平面; (Ⅱ)求二面角的正切值.
已知数列是递增数列,且满足。 (1)若是等差数列,求数列的通项公式; (2)对于(1)中,令,求数列的前项和。
已知圆,直线,点在直线上,过点作圆的切线、,切点为、. (Ⅰ)若,求点坐标; (Ⅱ)若点的坐标为,过作直线与圆交于、两点,当时,求直线的方程; (III)求证:经过、、三点的圆与圆的公共弦必过定点,并求出定点的坐标.
如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点. (Ⅰ)求证:AC⊥SD; (Ⅱ)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由.
已知圆和定点,由圆外一点向圆引切线,切点为,且满足, (Ⅰ)求实数间满足的等量关系; (Ⅱ)求线段长的最小值.