已知椭圆,直线(m+3)x+(1-2m)y-m-3=0恒过的定点F为椭圆的一个焦点,且椭圆上的点到焦点F的最大距离为3.(1)求椭圆C的方程;(2)若直线MN为垂直于x轴的动弦,且M,N均在椭圆C上,定点T(4,0),直线MF与直线NT交于点S.①证:点S恒在椭圆C上;②求△MST面积的最大值.
在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系.圆,直线的极坐标方程分别为. (Ⅰ)求与交点的极坐标; (Ⅱ)设为的圆心,为与交点连线的中点.已知直线的参数方程为(为参数),求的值.
如图,是圆的直径,直线与圆相切于,垂直于,垂直于,垂直于,垂直于,连接,证明: (Ⅰ); (Ⅱ).
已知函数. (Ⅰ)当时,求函数的点处的切线方程; (Ⅱ)设,若函数在定义域内存在两个零点,求实数的取值范围.
已知椭圆的两个焦点分别为,过点的直线与椭圆相交于两点,且. (Ⅰ)求椭圆的离心率; (Ⅱ)求直线的斜率.
如图,已知四棱锥,底面为菱形,平面,,分别是的中点. (Ⅰ)证明:; (Ⅱ)若,求二面角的余弦值.