袋子中放有大小和形状相同的小球若干,其中标号为1的小球1个,标号为2的小球2个,标号为3的小球个,已知从袋中随机抽取1个小球,取到标号3的小球的概率为.(1)求的值;(2)从袋子中不放回地随机抽取2个球,记第一次取出的小球标号为,第二次取出的小球标号为.①记“”为事件A,求事件A的概率;②在区间内任取2个实数,求事件“” 恒成立的概率.
已知直线经过点。 (I)求的值; (II)若直线过点且,求直线的方程。
如图,直三棱柱A1B1C1—ABC中,C1C=CB=CA=2,AC⊥CB. D、E分别为棱C1C、B1C1的中点. 求正切值;
已知数列的前n项和为,点在直线上.数列满足: ,且,前9项和为153. 求数列{bn}的通项公式;
已知f(x)=定义在区间[-1,1]上,设x1,x2∈[-1,1]且x1≠x2. 求证: | f(x1)-f(x2)|≤| x1-x2|
已知二阶矩阵A的属于特征值-1的一个特征向量为,属于特征值3的一个特征向量为,求矩阵A.