如图,已知矩形所在平面外一点,平面,分别是的中点,.(1)求证:平面(2)若,求直线与平面所成角的正弦值.
已知点,是函数 图象上的任意两点,且角的终边经过点,若时,的最小值为. (1)求函数的解析式; (2)求函数的单调递增区间; (3)求当时,的值域.
有两个函数,它们的最小正周期之和为,且满足,求这两个函数的解析式,并求的对称中心坐标及单调区间.
已知,且满足,(1)求的值;(2)求的值.
已知,求值: (1); (2).
如图,在平面直角坐标系xoy中,椭圆E:+=1的离心率为,直线l:y=x与椭圆E相交于A,B两点,AB=,C,D是椭圆E上异于A,B两点,且直线AC,BD相交于点M,直线AD,BC相交于点N.(1)求a,b的值;(2)求证:直线MN的斜率为定值.