已知抛物线的焦点为,为上异于原点的任意一点,过点的直线 交于另一点,交轴的正半轴于点,且有,当点的横坐标为3时,为正三角形. (1)求C的方程; (2)若直线,且 和C有且只有一个公共点E. ①证明直线AE过定点,并求出定点坐标; ②的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
中,已知,,设,的周长为. (Ⅰ)求的表达式;(Ⅱ)当为何值时最大,并求出的最大值.
已知等差数列中,,. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足:,并且,试求数列的前项和.
已知;若是的必要非充分条件,求实数的取值范围。
(本小题满分12分) 已知函数f(x)=Asin(x+)(x∈R,>0, 0<<)的部分图象如图所示。 (1)求函数f(x)的解析式; (2)求函数g(x)=f(x-)的单调递增区间。
(本小题满分12分) 已知函数是定义域为的奇函数,(1)求实数的值;(2)证明是上的单调函数;(3)若对于任意的,不等式恒成立,求的取值范围.