在数列{an}中,已知.(1)求数列{an}的通项公式;(2)求证:数列{bn}是等差数列;(3)设数列{cn}满足cn=an+bn,求{cn}的前n项和Sn.
(本小题满分10分)如图,平面四边形中,,三角形的面积为,, ,求: (1)的长; (2)
(本小题满分12分)已知数列{}满足=,是{}的前项的和,. (1)求;(2)证明:
(本小题满分12分) 已知两定点满足条件的点的轨迹是曲线,直线与曲线交于两点 如果且曲线上存在点,使求
(本小题满分12分) 如图,在三棱锥A-BCD中,侧面ABD、 ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形. (1) 求证:AD^BC; (2) 求二面角B-AC-D的大小; (3) 在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由
(本小题满分12分) 已知定义在正实数集上的函数,,其中 设两曲线,有公共点,且在该点处的切线相同 (I)用表示,并求的最大值;(II)求证:()