设函数f(x)=﹣x(x∈R),其中m>0.(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)求函数f(x)的单调区间与极值;(3)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围.
设集合,,分别求满足下列条件的实数的取值或取值范围:(1);(2).
(1)求值:;(2)解不等式:.
(本小题满分14分)如图,椭圆:的左焦点为,右焦点为,离心率.过的直线交椭圆于两点,且△的周长为.(Ⅰ)求椭圆的方程.(Ⅱ)设动直线:与椭圆有且只有一个公共点,且与直线相交于点.试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,说明理由.
(本小题13分)如图,棱锥的底面是矩形,⊥平面,,(1)求证:⊥平面;(2)求二面角的大小;(3)求点到平面的距离.
某商场举行抽奖活动,从装有编号0,1,2,3四个球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖。(1)求中二等奖的概率; (2)求未中奖的概率。