已知集合,集合B={x||x﹣m|≤2},若A∩B≠∅,求m的取值范围.
设椭圆C: 过点(0,4),(5,0). (1)求C的方程; (2)求过点(3,0)且斜率为的直线被椭圆C所截线段的中点坐标
甲、乙两射击运动员分别对一目标射击次,甲射中的概率为,乙射中的概率为,求: (1)人都射中目标的概率; (2)人中恰有人射中目标的概率; (3)人至少有人射中目标的概率
设函数,其中. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)求函数的极值点; (Ⅲ)证明对任意的正整数,不等式都成立.
函数,过曲线上的点的切线方程为. (1)若在时有极值,求的表达式; (2)在(1)的条件下,求在[-3,1]上的最大值; (3)若函数在区间[-2,1]上单调递增,求实数b的取值范围.
已知椭圆C:的离心率为,椭圆C上任意一点到椭圆两焦点的距离之和为6. (1)求椭圆C的方程; (2)设直线与椭圆C交于A,B两点,点P(0,1),且满足PA=PB,求直线的方程.