如图,在六面体ABCD-A1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A1B1C1D1是边长为1的正方形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2.(Ⅰ)求证:A1C1与AC共面,B1D1与BD共面;(Ⅱ)求证:平面A1ACC1⊥平面B1BDD1;(Ⅲ)求二面角A-BB1-C的大小(用反三角函数值表示).
设求的最小值.
已知圆M经过直线与圆的交点,且圆M的圆心到直线的距离为,求圆M的方程.
若不等式对任意恒成立,则的取值范围是
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线经过点P(1,1),倾斜角. (1)写出直线的参数方程; (2)设与圆相交于两点A、B,求点P到A、B两点的距离之积.
选修4-1几何证明选讲,如图,D,E分别是AB,AC边上的点,且不与顶点重合,已知为方程的两根, (1)证明 C,B,D,E四点共圆; (2)若,求C,B,D,E四点所在圆的半径。