《中国足球改革总体方案》提出足球要进校园.为了解某校学生对校园足球喜爱的情况,随机对该校部分学生进行了调查,将调查结果分为“很喜欢”、“较喜欢”、“一般”、“不喜欢”四个等级,并根据调查结果绘制成了如下两幅不完整的统计图: (1)一共调查了 名学生,请补全条形统计图; (2)在此次调查活动中,选择“一般”的学生中只有两人来自初三年级.现在要从选择“一般”的同学中随机抽选两人来谈谈各自对校园足球的感想,请用画树状图或列表法求选中的两人刚好都来自初三年级的概率.
为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为 A、 B、 C、 D四个等级,绘制如下不完整的统计图表,如图表所示,根据图表信息解答下列问题:
成绩等级频数分布表
成绩等级
频数
A
24
B
10
C
x
D
2
合计
y
(1) x= , y= ,扇形图中表示 C的圆心角的度数为 度;
(2)甲、乙、丙是 A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.
如图,在△ ABC中,点 D是 AB边上的一点.
(1)请用尺规作图法,在△ ABC内,求作∠ ADE,使∠ ADE=∠ B, DE交 AC于 E;(不要求写作法,保留作图痕迹)
(2)在(1)的条件下,若 AD DB =2,求 AE EC 的值.
已知在平面直角坐标系中,点 A(3,0), B(﹣3,0), C(﹣3,8),以线段 BC为直径作圆,圆心为 E,直线 AC交⊙ E于点 D,连接 OD.
(1)求证:直线 OD是⊙ E的切线;
(2)点 F为 x轴上任意一动点,连接 CF交⊙ E于点 G,连接 BG;
①当tan∠ ACF= 1 7 时,求所有 F点的坐标 (直接写出);
②求 BG CF 的最大值.
如图抛物线 y= ax 2+ bx+ c经过点 A(﹣1,0),点 C(0,3),且 OB= OC.
(1)求抛物线的解析式及其对称轴;
(2)点 D、 E在直线 x=1上的两个动点,且 DE=1,点 D在点 E的上方,求四边形 ACDE的周长的最小值.
(3)点 P为抛物线上一点,连接 CP,直线 CP把四边形 CBPA的面积分为3:5两部分,求点 P的坐标.
有 A、 B两个发电厂,每焚烧一吨垃圾, A发电厂比 B发电厂多发40度电, A焚烧20吨垃圾比 B焚烧30吨垃圾少1800度电.
(1)求焚烧1吨垃圾, A和 B各发电多少度?
(2) A、 B两个发电厂共焚烧90吨的垃圾, A焚烧的垃圾不多于 B焚烧的垃圾两倍,求 A厂和 B厂总发电量的最大值.