《中国足球改革总体方案》提出足球要进校园.为了解某校学生对校园足球喜爱的情况,随机对该校部分学生进行了调查,将调查结果分为“很喜欢”、“较喜欢”、“一般”、“不喜欢”四个等级,并根据调查结果绘制成了如下两幅不完整的统计图: (1)一共调查了 名学生,请补全条形统计图; (2)在此次调查活动中,选择“一般”的学生中只有两人来自初三年级.现在要从选择“一般”的同学中随机抽选两人来谈谈各自对校园足球的感想,请用画树状图或列表法求选中的两人刚好都来自初三年级的概率.
已知关于的方程组的解满足不等式,求实数的取值范围。
.如图10,在直角△ABC中,∠C=90,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数。
如图11, E 、 F 分别是矩形 A B C D 的对角线 A C 和 B D 上的点,且 A E = D F 。求证: B E = C F
(11·钦州). 如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C (0,4),顶点为. (1)求抛物线的函数表达式; (2)设抛物线的对称轴与轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件的所有点P的坐标. (3)若点E是线段AB上的一个动点(与A、B不重合),分别连接AC、BC,过点E作EF∥AC交线段BC于点F,连接CE,记△CEF的面积为S,S是否存在最大值?若存在,求出S的最大值及此时E点的坐标;若不存在,请说明理由.
(11·钦州) 如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D. 锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E. (1)求证:AC平分∠DAB; (2)过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作法); (3)若CD=4,AC=4,求垂线段OE的长.