如图,把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm,把三角板DCE绕点C顺时针旋转15°得到△D′CE′,如图乙.这时AB与CD′相交于点O,D′E′与AB相交于点F,连接AD′.(1)求∠OFE′的度数;(2)求线段AD′的长;(3)若把三角形D′C E′ 绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2 的内部、外部、还是边上?证明你的判断.
如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D. 求证:(1)D是BC的中点; (2)△BEC∽△ADC; (3)若,求⊙O的半径。
在一场2015亚洲杯赛B组第二轮比赛中,中国队凭借吴曦和孙可在下半场的两个进球,提前一轮小组出线。如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员孙可在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半. (1)求足球开始飞出到第一次落地时,该抛物线的函数表达式. (2)足球第一次落地点距守门员多少米?(取) (3)孙可要抢到足球第二个落地点,他应从第一次落地点再向前跑多少米?(取)
如图,某大楼的顶部树有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度,AB=10米,AE=15米. (1)求点B距水平面AE的高度BH; (2)求广告牌CD的高度. (测角器的高度忽略不计,结果精确到0.1米.参考数据:)
已知二次函数(是常数). (1)求证:不论为何值,该函数的图象与x轴没有公共点; (2)把该函数的图象沿轴向下平移多少个单位长度后,得到的函数的图象与轴只有一个公共点?
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B. (1)求证:△ADF∽△DEC (2)若AB=4,AD=3,AE=3,求AF的长.