命题P:函数y=是增函数,命题q:对任意x都有恒成立若“p或q”为真,“p且q”为假,求a的取值范围
选修4-2:矩阵与变换(本小题满分10分)已知矩阵M(1) 求矩阵M的逆矩阵;(2) 求矩阵M的特征值及特征向量;
选修4-1:几何证明选讲(本小题满分10分)如图, 半径分别为R,r(R>r>0)的两圆内切于点T,P是外圆上任意一点,连PT交于点M,PN与内圆相切,切点为N。求证:PN:PM为定值。
(本小题满分16分)数列的前n项和为,存在常数A,B,C,使得对任意正整数n都成立。(1) 若数列为等差数列,求证:3A-B+C=0;(2) 若设数列的前n项和为,求;(3) 若C=0,是首项为1的等差数列,设,求不超过P的最大整数的值。
(本小题满分16分)已知函数的导函数。(1)若,不等式恒成立,求a的取值范围;(2)解关于x的方程;(3)设函数,求时的最小值;
(本小题满分16分)如图,在平面直角坐标系xoy中,圆C:,点F(1,0),E是圆C上的一个动点,EF的垂直平分线PQ与CE交于点B,与EF交于点D。(1) 求点B的轨迹方程;(2) 当D位于y轴的正半轴上时,求直线PQ的方程;(3) 若G是圆上的另一个动点,且满足FG⊥FE。记线段EG的中点为M,试判断线段OM的长度是否为定值?若是,求出该定值;若不是,说明理由。