(本题满分12分)已知(m为常数,且m>0)有极大值,(Ⅰ)求m的值;(Ⅱ)求曲线的斜率为2的切线方程.
某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米。(1)分别用x表示y和S的函数关系式,并给出定义域;(2)怎样设计能使S取得最大值,并求出最大值。
已知二次函数的二次项系数为,且不等式的解集为.(1)若方程有两个相等的实数根, 求的解析式;(2)若的最大值为正数,求的取值范围.
已知命题p:,命题q:. 若“p且q”为真命题,求实数m的取值范围.
(本小题满分14分)已知函数.(Ⅰ)若曲线在和处的切线互相平行,求的值;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得,求的取值范围.
(本小题满分13分)已知向量m=n=.(1)若m·n=1,求的值;(2)记函数f(x)= m·n,在中,角A,B,C的对边分别是a,b,c,且满足求f(A)的取值范围.