为开展“争当书香少年”活动,小石对本校部分同学进行“最喜欢的图书类别”的问卷调查,结果统计后,绘制了如下两幅不完整的统计图: 根据以上统计图提供的信息,回答下列问题: (1)此次被调查的学生共 人; (2)补全条形统计图; (3)扇形统计图中,艺术类部分所对应的圆心角为 度; (4)若该校有1200名学生,估计全校最喜欢“文史类”图书的学生有 人.
如图,在平面直角坐标系中,已知平行四边形的三个顶点坐标分别是O(0,0),A(-3,0),B(0,2),求平行四边形第四个顶点C的坐标.
中国象棋棋盘中蕴含着平面直角坐标系,如图9是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走. 例如:图中“马”所在的位置可以直接走到点A、B处.(1)如果“帅”位于点 (0,0),“相”位于点(4,2),则“马”所在的点的坐标为 ,点C的坐标为 ,点D的坐标为 .(2)若“马”的位置在C点,为了到达D点,请按“马”走的规则,在图中画出一种你认为合理的行走路线,并用坐标表示.
如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连续为边的三角形称为“格点三角形”,图中的△ABC是格点三角形,在建立平面直角坐标系后,点B的坐标为(-1,-1)把△ABC绕点C按顺时针方向旋转90°后得到△A1B1C,画出△A1B1C的图形,并写出点B1的坐标.
如图的围棋放置在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),求黑棋①的坐标.
直角坐标系中,一长方形的宽与长分别是6,8,对角线的交点在原点,两组对边分别与坐标轴平行,求它各顶点的坐标.