某中学举行了一次“数学基础知识竞赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照,,,,的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在,的数据).(1)求样本容量和频率分布直方图中的、的值;(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“市级数学基础知识竞赛”,求所抽取的2名学生中恰有一人得分在内的概率.
在中,角所对的边分别为,且, (1)求,的值; (2)若,求的值.
已知函数 (Ⅰ)求的最小正周期和单调递增区间; (Ⅱ)求函数在上的值域.
已知圆的圆心与点关于直线对称,圆与直线相切. (1)设为圆上的一个动点,若点,,求的最小值; (2)过点作两条相异直线分别与圆相交于,且直线和直线的倾斜角互补,为坐标原点,试判断直线和是否平行?请说明理由.
设是数列的前项和,,,. (1)求证:数列是等差数列,并的通项; (2)设,求数列的前项和.
函数是定义在上的偶函数,,当时,. (1)求函数的解析式; (2)解不等式;