已知动点与两定点、连线的斜率之积为.(1)求动点的轨迹C的方程;(2)若过点的直线交轨迹于M、N两点,且轨迹上存在点E使得四边形OMEN(O为坐标原点)为平行四边形,求直线的方程.
已知数列 { a n } 满足 1 3 a n ≤ a n + 1 ≤ 3 a n , n ∈ N + , a 1 = 1 . (1)若 a 2 = 2 , a 3 = x , a 4 = 9 ,求 x 的取值范围; (2)若 { a n } 是公比为 q 等比数列, S n = a 1 + a 2 + . . . + a n , 1 3 S n ≤ S n + 1 ≤ 3 S n , n ∈ N + 求 q 的取值范围; (3)若 a 1 , a 2 , . . . , a k 成等差数列,且 a 1 + a 2 + . . . + a k = 1000 ,求正整数 k 的最大值,以及 k 取最大值时相应数列 a 1 , a 2 , . . . , a k 的公差.
在平面直角坐标系 x O y 中,对于直线 l : a x + b y + c = 0 和点 P 1 ( x 1 , y 1 ) , P 2 ( x 2 , y 2 ) 记 η = ( a x 1 + b y 1 + c ) ( a x 2 + b y 2 + c ) 若 η < 0 ,则称点 P 1 , P 2 被直线 l 分隔.若曲线 C 与直线 l 没有公共点,且曲线 C 上存在点 P 1 , P 2 被直线 l 分隔,则称直线 l 为曲线 C 的一条分隔线. (1)求证:点 A ( 1 , 2 ) , B ( - 1 , 0 ) 被直线 x + y - 1 = 0 分隔;
(2)若直线 y = k x 是曲线 x 2 - 4 y 2 = 1 的分隔线,求实数 k 的取值范围; (3)动点 M 到点 Q ( 0 , 2 ) 的距离与到 y 轴的距离之积为1,设点 M 的轨迹为 E ,求证:通过原点的直线中,有且仅有一条直线是 E 的分割线.
如图,某公司要在、两地连线上的定点处建造广告牌,其中为顶端,长35米,长80米,设、在同一水平面上,从和看的仰角分别为.
(1)设计中是铅垂方向,若要求,问的长至多为多少(结果精确到0.01米)? (2)施工完成后与铅垂方向有偏差,现在实测得,求的长(结果精确到0.01米)?
设常数,函数. (1)若,求函数的反函数; (2)根据的不同取值,讨论函数的奇偶性,并说明理由.
底面边长为2的正三棱锥,其表面展开图是三角形,如图,求的各边长及此三棱锥的体积.