在平面直角坐标系中,椭圆的中心为原点,焦点在轴上,离心率为,过点的直线交椭圆于两点,且的周长为16,求椭圆的标准方程.
已知关于的一元二次函数,设集合,分别从集合P和Q中随机取一个数作为和 (1)求函数有零点的概率; (2)求函数在区间上是增函数的概率。
已知数列满足:其中,数列满足: (1)求; (2)求数列的通项公式; (3)是否存在正数k,使得数列的每一项均为整数,如果不存在,说明理由,如果存在,求出所有的k.
已知函数 (1)若方程内有两个不等的实根,求实数m的取值范围;(e为自然对数的底数) (2)如果函数的图象与x轴交于两点、且.求证:(其中正常数).
已知椭圆C的两个焦点分别为,且点在椭圆C上,又. (1)求焦点F2的轨迹的方程; (2)若直线与曲线交于M、N两点,以MN为直径的圆经过原点,求实数b的取值范围.
如图,已知四棱锥的底面的菱形,,点是边的中点,交于点, (1)求证:; (2)若的大小; (3)在(2)的条件下,求异面直线与所成角的余弦值。