已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.(1)已知,利用上述性质,求函数的单调区间和值域;(2)对于(1)中的函数和函数,若对任意∈[0,1],总存在∈[0,1],使得=成立,求实数的值.
如图,平面凸多面体的体积为,为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面.
已知点是函数的图象上一点,数列的前n项和.(Ⅰ)求数列的通项公式;(Ⅱ)将数列前2013项中的第3项,第6项, ,第3k项删去,求数列前2013项中剩余项的和.
已知函数的最小正周期为.(Ⅰ)求的值;(Ⅱ)求函数在区间上的值域.
已知函数.(Ⅰ)求函数的极大值.(Ⅱ)求证:存在,使;(Ⅲ)对于函数与定义域内的任意实数x,若存在常数k,b,使得和都成立,则称直线为函数与的分界线.试探究函数与是否存在“分界线”?若存在,请给予证明,并求出k,b的值;若不存在,请说明理由.
在平面直角坐标系中,已知椭圆:的离心率,且椭圆C上一点到点Q的距离最大值为4,过点的直线交椭圆于点(Ⅰ)求椭圆C的方程;(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当时,求实数的取值范围.