已知函数.(Ⅰ)求函数的极大值.(Ⅱ)求证:存在,使;(Ⅲ)对于函数与定义域内的任意实数x,若存在常数k,b,使得和都成立,则称直线为函数与的分界线.试探究函数与是否存在“分界线”?若存在,请给予证明,并求出k,b的值;若不存在,请说明理由.
(本小题12分) 已知双曲线的中心在原点,左、右焦点F1、F2在坐标轴上,渐近线为,且过点。 (1)求双曲线方程。 (2)若点在双曲线上,求证:;
、(本小题12分) 设函数,是实数,是自然对数的底数) (1)当时,求的单调区间; (2)若直线与函数的图象都相切,且与函数的图象相切于点(1,0),求P的值。
(本小题12分) 已知椭圆C的左右焦点坐标分别是(-1,0),(1,0),离心率,直线与椭圆C交于不同的两点M,N,以线段MN为直径作圆P。 (1)求椭圆C的方程; (2)若圆P恰过坐标原点,求圆P的方程;
(本小题12分) 有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用表示结果,其中表示投掷第1颗正四面体玩具落在底面的数字,表示投掷第2颗正四面体玩具落在底面的数字。 (1)写出试验的基本事件;(2)求事件“落在底面的数字之和大于3”的概率; (3)求事件“落在底面的数字相等”的概率。