如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.
如图,点 M 是正方形 ABCD 边 CD 上一点,连接 AM ,作 DE ⊥ AM 于点 E , BF ⊥ AM 于点 F ,连接 BE .
(1)求证: AE = BF ;
(2)已知 AF = 2 ,四边形 ABED 的面积为24,求 ∠ EBF 的正弦值.
如图,抛物线 y = a x 2 + bx + c ( a ≠ 0 ) 与 x 轴交于点 A ( − 4 , 0 ) , B ( 2 , 0 ) ,与 y 轴交于点 C ( 0 , 4 ) ,线段 BC 的中垂线与对称轴 l 交于点 D ,与 x 轴交于点 F ,与 BC 交于点 E ,对称轴 l 与 x 轴交于点 H .
(1)求抛物线的函数表达式;
(2)求点 D 的坐标;
(3)点 P 为 x 轴上一点, ⊙ P 与直线 BC 相切于点 Q ,与直线 DE 相切于点 R .求点 P 的坐标;
(4)点 M 为 x 轴上方抛物线上的点,在对称轴 l 上是否存在一点 N ,使得以点 D , P , M , N 为顶点的四边形是平行四边形?若存在,则直接写出 N 点坐标;若不存在,请说明理由.
如图1,在四边形 BCDE 中, BC ⊥ CD , DE ⊥ CD , AB ⊥ AE ,垂足分别为 C , D , A , BC ≠ AC ,点 M , N , F 分别为 AB , AE , BE 的中点,连接 MN , MF , NF .
(1)如图2,当 BC = 4 , DE = 5 , tan ∠ FMN = 1 时,求 AC AD 的值;
(2)若 tan ∠ FMN = 1 2 , BC = 4 ,则可求出图中哪些线段的长?写出解答过程;
(3)连接 CM , DN , CF , DF .试证明 ΔFMC 与 ΔDNF 全等;
(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.
为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量 y (万件)与销售单价 x (元 ) 之间的函数关系如图所示.
(1)求该网店每月利润 w (万元)与销售单价 x (元 ) 之间的函数表达式;
(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?
为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表
一周诗词诵背数量
3首
4首
5首
6首
7首
8首
人数
10
15
40
25
20
请根据调查的信息分析:
(1)活动启动之初学生“一周诗词诵背数量”的中位数为 ;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.