如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.
已知二次函数在和时的函数值相等。 (1)求二次函数的解析式; (2)若一次函数的图象与二次函数的图象都经过点,求和的值; (3)设二次函数的图象与轴交于点(点在点的左侧),将二次函数的图象在点间的部分(含点和点)向左平移个单位后得到的图象记为,同时将(2)中得到的直线向上平移个单位。请结合图象回答:当平移后的直线与图象有公共点时,的取值范围。
如图,AB是⊙O的直径,AC是弦. (1)请你按下面步骤画图; 第一步,过点A作∠BAC的角平分线,交⊙O于点D; 第二步,过点D作AC的垂线,交AC的延长线点E. 第三步,连接BD. (2)求证:AD2=AE•AB; (3)连接EO,交AD于点F,若5AC=3AB,求的值.
先阅读下面的材料,然后解答问题:通过观察,发现方程的解为;的解为;的解为; ………………………… (1)观察上述方程的解,猜想关于x的方程的解是________________; (2)根据上面的规律,猜想关于x的方程的解是___________________; (3)把关于x的方程变形为方程的形式是______,方程的解是___________.
2012年5月18日,某国3艘炮艇追袭5条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政310”船人船未歇立即追往北纬11度22分、东经110度45分附近海域护渔,保护100多名中国渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去. 解决问题:如图,已知“中国渔政310”船(A)接到陆地指挥中心(B)命令时,渔船(C)位于陆地指挥中心正南方向,位于“中国渔政310”船西南方向,“中国渔政310”船位于陆地指挥中心南偏东60°方向,AB=海里,“中国渔政310”船最大航速20海里/时.根据以上信息,请你求出“中国渔政310”船赶往出事地点需要多少时间.
正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM. (1)求证:EF=FM; (2)当AE=1时,求EF的长.