已知数列满足且,且,设,数列满足.(Ⅰ)求证是等比数列并求出数列的通项公式;(Ⅱ)求数列的前项和;(Ⅲ)对于任意恒成立,求实数的取值范围.
某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用表示该学生选修的课程门数和没有选修的课程门数的乘积. (Ⅰ)记“函数为R上的偶函数”为事件A,求事件A的概率; (Ⅱ)求的分布列和数学期望.
已知()n展开式中的倒数第三项的系数为45,求: (1)含x3的项; (2)系数最大的项.
已知的展开式中,某一项的系数是它前一项系数的2倍,而等于它后一项的系数的. (1)求该展开式中二项式系数最大的项; (2)求展开式中系数最大的项.
如图,直四棱柱ABCD—A1B1C1D1的高为3,底面是边长为4且∠DAB = 60°的菱形,ACBD = O,A1C1B1D1 = O1,E是O1A的中点.
已知函数. (1)若在x = 0处取得极值为 – 2,求a、b的值; (2)若在上是增函数,求实数a的取值范围.