某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:
(1)在给出的坐标系中,画出关于x、y两个相关变量的散点图. (2)请根据上表提供的数据,用最小二乘法求出变量关于变量的线性回归直线方程. (3)预测饲养满12个月时,这种鱼的平均体重(单位:千克). (参考公式:,,,,,
某海域有、两个岛屿,岛在岛正东4海里处。经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发现过鱼群。以、所在直线为轴,的垂直平分线为轴建立平面直角坐标系。(1)求曲线的标准方程;(2)某日,研究人员在、两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),、两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?
设函数,其中;(1)若的最小正周期为,求的单调增区间;(2)若函数的图象的一条对称轴为,求的值.
已知集合,集合,,求实数的取值范围.
(本小题满分14分)已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.(1)当b=0时,若对x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.①求证:x1>1>x2;②若当x≥x1时,关于x的不等式ax2-x+xe+1≤0恒成立,求实数a的取值范围.
(本小题满分14分)已知椭圆的中心是坐标原点,焦点在x轴上,离心率为,又椭圆上任一点到两焦点的距离和为,过点M(0,)与x轴不垂直的直线交椭圆于P、Q两点.(1)求椭圆的方程;(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.