某海域有、两个岛屿,岛在岛正东4海里处。经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发现过鱼群。以、所在直线为轴,的垂直平分线为轴建立平面直角坐标系。(1)求曲线的标准方程;(2)某日,研究人员在、两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),、两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?
求过点P(3, 0)且与圆x2+6x+y2-91=0相内切的动圆圆心的轨迹方程。
已知函数,函数,称方程 的根为函数f(x)的不动点, (1)若f(x)在区间[0,3]上有两个不动点,求实数的取值范围; (2)记区间D="[1," ](>1),函数f(x)在D上的值域为集合A,函数g(x)在D上的值域为集合B,已知,求的取值范围。
已知函数, (1)若f(x)在区间[m,m+1]上单调递减,求实数m的取值范围; (2)若f(x)在区间[a,b](a<b)上的最小值为a,最大值为b,求a、b的值。
已知函数, (1)判断并证明f(x)在上的单调性; (2)讨论函数在上的零点的个数。
已知为定义在R上的偶函数,为实常数, (1)求的值; (2)若已知为定义在R上的奇函数,判断并证明函数的奇偶性。