如图,在平面直角坐标系xoy中,椭圆E:+=1的离心率为,直线l:y=x与椭圆E相交于A,B两点,AB=,C,D是椭圆E上异于A,B两点,且直线AC,BD相交于点M,直线AD,BC相交于点N.(1)求a,b的值;(2)求证:直线MN的斜率为定值.
已知函数f(x)=,x∈[0,2].(1)求f(x)的值域;(2)设a≠0,函数g(x)=ax3-a2x,x∈[0,2].若对任意x1∈[0,2],总存在x2∈[0,2],使f(x1)-g(x2)=0.求实数a的取值范围.
设a>0,函数f(x)=,b为常数.(1)证明:函数f(x)的极大值点和极小值点各有一个;(2)若函数f(x)的极大值为1,极小值为-1,试求a的值.
某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)="3" 700x+45x2-10x3(单位:万元),成本函数为C(x)="460x+5" 000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).(1)求利润函数P(x)及边际利润函数MP(x);(提示:利润=产值-成本)(2)问年造船量安排多少艘时,可使公司造船的年利润最大?(3)求边际利润函数MP(x)的单调递减区间,并说明单调递减在本题中的实际意义是什么?
求函数y=x4-2x2+5在区间[-2,2]上的最大值与最小值.
已知函数f(x)=x2e-ax(a>0),求函数在[1,2]上的最大值.