记集合,集合.(1)若,求;(2)若,求实数的取值范围.
已知函数f(x)=4x3+ax2+bx+5在x=-1与x=处有极值。(1)写出函数的解析式;(2)求出函数的单调区间;(3)求f(x)在[-1,2]上的最值。
.设函数y=x3+ax2+bx+c的图象如图所示,且与y=0在原点相切,若函数的极小值为-4,(1)求a、b、c的值;(2)求函数的递减区间.
.(12分)设f(x)=x3+,求函数f(x)的单调区间及其极值;
(14分)已知中心在原点,顶点在轴上,离心率为的双曲线经过点(I)求双曲线的方程(II)动直线经过的重心,与双曲线交于不同的两点,问是否存在直线使平分线段。试证明你的结论。
( 13分)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。(Ⅰ)求甲中奖且乙、丙都没有中奖的概率;(Ⅱ)求中奖人数ξ的分布列及数学期望Eξ.