某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并求顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2 min的概率.(注:将频率视为概率)
已知圆与直线相交于两点. ⑴求弦的长; ⑵若圆经过,且圆与圆的公共弦平行于直线,求圆的方程.
已知函数. (1)若关于的方程只有一个实数解,求实数的取值范围; (2)若当时,不等式恒成立,求实数的取值范围; (3)探究函数在区间上的最大值(直接写出结果,不需给出演算步骤).
已知两个不共线的向量满足, (1)若与垂直,求向量与的夹角; (2)当时,若存在两个不同的使得成立,求正数的取值范围.
已知函数 (1)判断函数的单调性并用函数单调性定义加以证明; (2)若在上的值域是,求的值; (3)当,若在上的值域是,求实数的取值范围.
已知函数(其中)图象的相邻两条对称轴间的距离为,且图象上一个最高点的坐标为. (1)求的解析式; (2)将函数的图象向右平移个单位后,得到函数的图象,求函数的单调递减区间.