年“双节”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔辆就抽取一辆的抽样方法抽取名驾驶员进行询问调查,将他们在某段高速公路的车速(/)分成六段:,,,,,后得到如图的频率分布直方图.(1)求这辆小型车辆车速的众数和中位数的估计值;(2)若从车速在的车辆中任抽取辆,求车速在的车辆恰有一辆的概率.
2006年5月3日进行抚仙湖水下考古,潜水员身背氧气瓶潜入湖底进行考察,氧气瓶形状如图,其结构为一个圆柱和一个圆台的组合(设氧气瓶中氧气已充满,所给尺寸是氧气瓶的内径尺寸),潜水员在潜入水下米的过程中,速度为米/分,每分钟需氧量与速度平方成正比(当速度为1米/分时,每分钟需氧量为0.2L);在湖底工作时,每分钟需氧量为0.4 L;返回水面时,速度也为米/分,每分钟需氧量为0.2 L,若下潜与上浮时速度不能超过p米/分,试问潜水员在湖底最多能工作多少时间?(氧气瓶体积计算精确到1 L,、p为常数,圆台的体积V=,其中h为高,r、R分别为上、下底面半径.)
已知f(x)是定义在[—1,1]上的奇函数,且f (1)=1,若m,n∈[—1,1],m+n≠0时有(1)判断f (x)在[—1,1]上的单调性,并证明你的结论;(2)解不等式:;(3)若f (x)≤对所有x∈[—1,1],∈[—1,1]恒成立,求实数t的取值范围.
已知二次函数f (x)=,设方程f (x)=x的两个实根为x1和x2.(1)如果x1<2<x2<4,且函数f (x)的对称轴为x=x0,求证:x0>—1;(2)如果∣x1∣<2,,∣x2—x1∣=2,求的取值范围.
已知集合P=的定义域为Q.(1)若P∩Q≠范围;(2)若方程求实数的取值范围.
某公司准备推出一个新产品,打算拨出款项3万6千元在本地的电视台做广告,.当地电视台广告部安排该公司的广告在晚上八点前和九点后做广告。晚八点前的广告每秒400元,九点后的广告每秒600元,每次播出的时间在10到60秒之间。根据市场调查研究表明,受广告影响的人数依赖于广告播出的时间以及年龄层次,受广告影响的人数总是和广告播出的时间成正比例。广告时每秒影响各年龄组的人数(千人)估计如表所示。现在的要求是广告宣传至少要影响1 500 000个年轻人,2 000 000个中年人和2 000 000个老年人。该公司也估计了在第一个月内受广告影响的人中,每10个年轻人中有1人、20个中年人中1人、50个老年人中1人将购买一件新产品〈并且假设没有一个人第二次再买〉,则若使第一个月的销售额最大,如何来安排广告?