年“双节”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔辆就抽取一辆的抽样方法抽取名驾驶员进行询问调查,将他们在某段高速公路的车速(/)分成六段:,,,,,后得到如图的频率分布直方图.(1)求这辆小型车辆车速的众数和中位数的估计值;(2)若从车速在的车辆中任抽取辆,求车速在的车辆恰有一辆的概率.
(本小题满分12分) 过椭圆的左顶点A做斜率为2的直线,与椭圆的另一个交点为B,与y轴的交点为C,已知. (Ⅰ)求椭圆的离心率; (Ⅱ)设动直线y=kx+m与椭圆有且只有一个公共点P,且与直线x=4相交于点Q,若x轴上存在一定点 M(1,0),使得PM⊥QM,求椭圆的方程.
(本小题满分共12分)已知函数, (1)若g(x)=f(x+1),求证:曲线g(x)上的任意一点处的切线与直线x=0和直线y=ax围成的三角形面积为定值; (2)若f(3)=3,是否存在实数m,k,使得f(x)+f(m﹣x)=k对于定义域内的任意x都成立;
(本小题满分12分)已知各项均为正数的等比数列{an}满足a3 =8,a5 +a7=160,{an}的前n项和为Sn. (Ⅰ)求an; (Ⅱ)若数列{bn}的通项公式为bn=(-1)n·n(n∈N+),求数列{an·bn}的前n项和Tn.
(本小题满分12分)如图几何体中,四边形ABCD为矩形,AB=3BC=6,EF =4,BF=CF=AE=DE=2, EF∥AB,G为FC的中点,M为线段CD上的一点,且CM =2. (Ⅰ)证明:平面BGM⊥平面BFC; (Ⅱ)求三棱锥F-BMC的体积V.
(本小题满分12分)已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=π,在△ABC中,角A、B、C所对的边分别是a、b、c. (Ⅰ)若a、b、c依次成等差数列,且公差为2.求c的值; (Ⅱ)若c=,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.